Transverse magnetization, M_t and T_2 decay • magnetization perpendicular to main field B • equilibrium $M_t = 0$ • if $M \neq 0$, it will: rotate about B at $\omega = \gamma$ B decay with time constant T_2 M_t time ## Classical view of NMR - Transverse magnetization decays with time constant \boldsymbol{T}_2 - Longitudinal magnetization recovers with time constant \mathbf{T}_1 ## Off-resonance • offset in resonant frequency • chemical shift • magnetic field inhomogeneity ## **Conclusions** - nuclei with magnetic moment & angular momentum - $B_0 \rightarrow longitudinal magnetization M_z$ - equilibrium M₂ μ proton density & B₀ - M, grows toward equilibrium with time constant T₁ - Excitation with B₁ rotating about B₀ at Larmor frequency ω $= \gamma B_0$ - RF pulse - rotating frame - flip angle (α, 90°, 180°), direction ### **Conclusions** - Transverse magnetization M, - perpendicular to B₀ rotates about B₀ at Larmor frequency - decays with time constant T2 - NMR signal generated by net M_t - FID, immediately after RF pulse - decays with time constant T₂* - spin echo, less sensitive to off-resonance - Magnetic Resonance Imaging - localization using magnetic field gradients - signal is related to the Fourier Transform of the object - k-space